Yes i think you should because its not a workable definition!
Statistics and probability, it its most basic form, is simply a ratio formulated from all possible outcomes in a given scenario. Keeping it simple, take a coin toss. One coin toss. The possible outcomes are heads and tails. (ignoring the minute chance it may land on its side) Therefore, the "probability" of any one side coming up in a single toss is the ratio of that outcome to the possible outcomes. Back to our coin toss, it's either heads or tails. Heads is one possibility. Tails is another possibility. The two, distinct possibilities, when added together, gives a total of two, to be redundant. The probability of heads occuring in one coin toss, for example, is 1 (the number of possible occurences that heads comes up) / 2 (the enumeration of the total possible occurances). Even though we are only dealing with 1 occurnce, there are 2 possible occurences.
Have I beat the dead horse long enough?
Changeling wrote something about the problem which, if interpreted litterally, using the mathematical definition of the words probability, chance, etc., is not correct.
I in no way support materially changing what someone has said and saying it is correct. If you want to ask if she meant "x or z," then go ahead. I still do not think your reading of her meaning is correct.
The reason both I and another person with math training missed the problem is worth noting. A common error the average person makes is assuming that having a series of consecutive and uniform outcomes affects the chance of obtaining the same outcome on another roll, and is a point has been made quite often. Identifying the problem as being of this type is an easy thing to do, and it's a short step to shutting down further analyzation. Ironically, it boils down to semantics--something you claim to dislike.
Furthermore, I think you misread me. I offer my background, not as "parading" it around, but simply to state that I do have significant knowledge in this regard. I welcome being proved wrong, and it does not bother me. I offer my knowledge to any who care to benefit/use it. When I say something is "incorrect," I'm stating a simple fact, not "coming down on someone like a ton of bricks." Once I say something is incorrect, I promptly offer an explanation of the reasons, especially when prompted. People who do not offer prompt explanations when questioned annoy me to no end, such as you have done with this thread.
Any other bits of wisdom such as what a "waste" of time math classes are?